“School of Cognitive Sciences”

Back to Papers Home
Back to Papers of School of Cognitive Sciences

Paper   IPM / Cognitive Sciences / 17817
School of Cognitive Sciences
  Title:   Resolving the neural mechanism of core object recognition in space and time: A computational approach
  Author(s): 
1.  N. Sadeghnejad
2.  M. Ezoji
3.  R. Ebrahimpour
4.  S. Zabbah
  Status:   Published
  Journal: Neuroscience Research
  Vol.:  190
  Year:  2023
  Pages:   36-50
  Supported by:  IPM
  Abstract:
The underlying mechanism of object recognition- a fundamental brain ability- has been investigated in various studies. However, balancing between the speed and accuracy of recognition is less explored. Most of the computational models of object recognition are not potentially able to explain the recognition time and, thus, only focus on the recognition accuracy because of two reasons: lack of a temporal representation mechanism for sensory processing and using non-biological classifiers for decision-making processing. Here, we proposed a hierarchical temporal model of object recognition using a spiking deep neural network coupled to a biologically plausible decision-making model for explaining both recognition time and accuracy. We showed that the response dynamics of the proposed model can resemble those of the brain. Firstly, in an object recognition task, the model can mimic human's and monkey's recognition time as well as accuracy. Secondly, the model can replicate different speed-accuracy trade-off regimes as observed in the literature. More importantly, we demonstrated that temporal representation of different abstraction levels (superordinate, midlevel, and subordinate) in the proposed model matched the brain representation dynamics observed in previous studies. We conclude that the accumulation of spikes, generated by a hierarchical feedforward spiking structure, to reach abound can well explain not even the dynamics of making a decision, but also the representations dynamics for different abstraction levels.

Download TeX format
back to top
scroll left or right