“School of Physics”

Back to Papers Home
Back to Papers of School of Physics

Paper   IPM / P / 16860
School of Physics
  Title:   Mechanical strength and flexibility in α′-4H borophene
  Author(s): 
1.  Sh. Mohammadi Mozvashi
2.  M.A. Mohebpour
3.  S. Izadi Vishkayi
4.  M. Bagheri Tagani
  Status:   Published
  Journal: Scientific Reports
  Vol.:  11
  Year:  2021
  Pages:   7547
  Supported by:  IPM
  Abstract:
Very recently, a novel phase of hydrogenated borophene, namely α′-4H, has been synthesized in a free-standing form. Unlike pure borophenes, this phase shows very good stability in the air environment and possesses semiconducting characteristics. Because of the interesting stiffness and flexibility of borophenes, herein, we systematically studied the mechanical properties of this novel hydrogenated phase. Our results show that the monolayer is stiffer (Yxy= ∼  195 N/m) than group IV and V 2D materials and even than MoS2, while it is softer than graphene. Moreover, similar to other phases of borophene, the inherent anisotropy of the pure monolayer increases with hydrogenation. The monolayer can bear biaxial, armchair, and zigzag strains up to 16, 10, and 14% with ideal strengths of approximately 14, 9, and 12 N/m, respectively. More interestingly, it can remain semiconductor under this range of tension. These outstanding results suggest that the α′-4H is a promising candidate for flexible nanoelectronics.

Download TeX format
back to top
scroll left or right